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SYNPOSIS 
We propose a novel, fully automated approach for estimating the noise-induced signal variance in magnitude reconstructed MRIs. This approach is 
based on the histogram analysis of the image signal intensity, explicitly by extracting the peak of the underlining Rayleigh distribution that would 
characterize the distribution of the background noise. We demonstrate that this peak position corresponds to the expected signal variance in the object, 
and extract the peak using Parzen window density estimation. No prior foreground segmentation is needed and only one image with a small amount of 
background is required when the signal-to-noise ratio is greater than three. This method is applicable to any magnitude reconstructed MRIs, though we 
use DT-MRI to demonstrate this approach. 
 
INTRODUCTION 
Assessing noise-induced signal variance is important in many MRI applications such as instrumentation quality control, image segmentation, estimation 
of quantitative parameters from MR data, and functional MRI. Signal variance, 2σ , can be estimated from the noise variance, 2

noiseσ , in a region of the 

image containing no object [1, 2]. Extracting the background from the image can be done using automated segmentation. However, the background of 
MR images, particularly those acquired using echo planar imaging techniques, are rarely free from ghosts and other artifacts. Another approach takes 
into account that the magnitude MR image measurement can be characterized by a Rayleigh distribution at zero signal to noise [3]. The mean and 
variance of the noise in the background of magnitude reconstructed images can thus be estimated by fitting the Rayleigh distribution to estimate the 
probability density function of the data. However, this implementation is susceptible to local optima encountered during the non-linear data fitting 
procedure. Additionally, because typical MR images have a bimodal or multi-modal distribution containing a mixture of background and foreground 
values, determining where to fit the distribution to the histogram is not trivial. Another clever approach for estimating the signal variance in MR images is 
the so called double acquisition method [4]. This approach, however, requires two identical images (with the exception of noise) which are difficult to 
obtain in practice because of motion that may occur between two different acquisitions. Moreover, artifacts such as ghosting, magnetic susceptibility 
induced distortions, etc., may not be exactly reproducible in two separate acquisitions. We propose a novel approach for automatically estimating the 
noise-induced signal variance in magnitude reconstructed MR images, which overcomes shortcomings associated with the methods mentioned above. 
 
METHODS 
Let Ar and Ai be the real and imaginary data corrupted by Gaussian distributed noise with zero mean 
and standard deviation σ . The probability density function (pdf) of the magnitude reconstructed data, 

ir AAA += , is given by a Rician distribution (1) where M is the magnitude image intensity and 0β is 

the zeroth-order Bessel function of the first kind. At low signal to noise (S/N), this distribution 
approaches the Rayleigh distribution (2) with mean 2/M πσ= and variance 22 )22( σπ−=σ /noise . At 

high S/N, the noise distribution approaches a Gaussian distribution (3) with mean 22 σ+= AM and 

variance 22 σ=σnoise .  
Note that the value of M for which p(M) in (2) is maximum is equal to σ . This finding can be easily checked by differentiating (2) with respect to M, 
setting the result equal to zero, and solving for M (4). This information can be used to extract the standard deviation of the signal intensity σ  in the 
images by simply identifying the peak of the noise distribution. We use the kernel or the Parzen density estimator [5] for this purpose, the most popular 
technique for nonparametric density estimation. The choice of basis function is not very important so long as it is smooth and bell-shaped [5]. We chose 
the Gaussian kernel because it is easy to manipulate and derive. The kernel size or window width is very important and sometimes is adapted to the 
application. There is a trade-off between too much variability on one hand (if the window width is too small) and increased bias on the other (if it is too 
large). The window width can be computed by minimizing the mean square error between the true and estimated density. In our simulation, we set the 
window width equal 1.06*(sample standard deviation)*n-1/5 where n is the sample size as suggested in [5]. We created synthetic images containing 
different size objects and added Gaussian distributed noise in quadrature to simulate images with different S/N. Our objective is to test the accuracy of 
the proposed method. 
 
RESULTS 
Figure 1 shows the simulation result on the amount of background required for the proposed method 
to properly estimate the peak of the noise distribution. If the error of the estimated signal standard 
deviation is set within 10%, 65% of the background in an image is required when S/N =3, 22% is 
required when S/N=4, and only a small amount of background is needed when S/N ≥ 5. In general, 
more background would provide a better result. If the background is less than required, for example, 
less than 60% when S/N=3, the estimated signal standard deviation is somewhat over-estimated. This 
is understandable because the noise distribution is contaminated by the “object signal” and the mixture 
of noise and object signal will always cause the estimated peak to be shift to the right. 
We use echo-planar diffusion weighted images as a test application. We carefully chose 30 regions 
manually from the background and compute the average of variance from those regions. Our 
preliminary result shows that the estimated signal variance using the Parzen window approach has 
similar results when compared with this conventional estimation (has the error rate within 10% in our 
testing data sets). Simulations with artifacts will be conducted to further verify our preliminary findings. 
 
CONCLUSION 
An automatic method for estimating the signal variance in magnitude reconstructed MRI is presented. 
This method needs only one image, does not require any user interaction as no background pixels 
need to be selected, and does not require prior brain segmentation. The result is promising when compared 
with the conventional manual object-free background selection. 
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Fig. 1 The background required for the kernel 
estimator to properly estimate the signal standard 
deviation (0.9σ < σestimated < 1.1σ) from an image 
(512*512). 


